Key Findings and Public Health Messages

- The California Department of Public Health (CDPH) received reports of 27,346 cases of confirmed and probable campylobacteriosis with estimated symptom onset dates from 2009 through 2012. This corresponds to an average annual incidence rate of 18.3 cases per 100,000 Californians.

- Campylobacteriosis annual incidence rate increased by 34.0 percent from 2009 (15.9 per 100,000) to 2012 (21.3 per 100,000).

- During the surveillance period, 29 (0.1 percent) case-patients were reported to have died with campylobacteriosis.

- Average annual campylobacteriosis incidence rates during the surveillance period were highest among children under 1 year of age (34.0 per 100,000) and 1 to 4 years of age (40.4 per 100,000). Incidence rates among all ages rose from 2009 to 2012 but increased the greatest among adults 75-84 years of age by 54.0 percent (from 16.3 to 25.1 per 100,000).

- From 2009 through 2012, CDPH received reports of 10 outbreaks of foodborne campylobacteriosis in California involving 132 cases.

- Decreasing contamination of poultry meat and dairy products, and educating consumers may provide the best opportunities for preventing and controlling campylobacteriosis.

Background

Campylobacter is among the most commonly reported enteric bacterial pathogens in the United States (US) causing an estimated 845,000 foodborne illnesses, 8,463 hospitalizations, and 76 deaths each year.1 The US Centers for Disease Control and Prevention (CDC) estimates that for every reported case of campylobacteriosis, there are 30 more undiagnosed incidents.1,2 The leading source of infection is foodborne, usually from consumption of contaminated animal products, particularly raw or undercooked poultry meat, and drinking of unpasteurized milk or contaminated water. Exposure to infected animals and their environments can also result in infection. Foodborne outbreaks of Campylobacter are relatively uncommon, in part because the organism does not multiply in food products.3 Outbreaks are more likely attributable to dairy products than are sporadic cases, which occur more commonly from poultry consumption.4 The national Healthy People 2020 target objective for campylobacteriosis is no more than 8.5 new cases per 100,000 population.

Acute illness, usually gastroenteritis characterized by diarrhea, abdominal cramping and fever, occurs after an incubation period of 2 to 5 days, and usually lasts 1 week. Severe illness and death may rarely occur, particularly among immunocompromised persons. Complications, including Guillain-Barré syndrome and reactive arthritis, may also occur.5 The recent emergence of human and animal Campylobacter isolates with fluoroquinolone resistance has led to restrictions on the use of some fluoroquinolones in poultry in the US.6

This report describes the epidemiology of confirmed and probable campylobacteriosis cases in California with estimated illness onset from January 2009 through December 2012 that were reported to CDPH by April 2015. Data for 2012 are provisional and may differ from data in future publications. For a complete discussion of the definitions, methods, and limitations associated with this report, please refer to Technical Notes.7 The epidemiologic description of campylobacteriosis for the 2001-2008 period can be found in the Epidemiologic Summary of Campylobacteriosis in California, 2001-2008.8

California reporting requirements and surveillance case definition

California Code of Regulations, Title 17, requires health care providers to report any cases of campylobacteriosis to their local health department within one working day of identification or immediately by telephone if an outbreak is suspected. Laboratories are also required to report laboratory testing results suggestive of Campylobacter infection to either the California Reportable Disease Information Exchange (CalREDIE) via electronic laboratory reporting or to the local health department; reporting must occur within one working day after the health care provider has been notified.

Local health officers are required by regulation to report to CDPH cases of campylobacteriosis. CDPH counted cases that satisfied the CDC/Council of State and Territorial Epidemiologists’ surveillance case definition of a confirmed or probable case. During the surveillance period, CDC defined a confirmed case as one with

Epidemiologic Summary of Campylobacteriosis in California, 2009—2012
Campylobacter" isolated from a clinical specimen including asymptomatic and extraintestinal infections. A probable case was one with clinically-compatible illness and an established epidemiologic link to a laboratory-confirmed case.

Epidemiology of campylobacteriosis in California

CDPH received reports of 27,346 cases of campylobacteriosis with estimated symptom onset dates from 2009 through 2012. This corresponds to an average annual incidence rate of 18.3 cases per 100,000 Californians. Reported campylobacteriosis incidence rates increased by 34.0 percent from 2009 (15.9 per 100,000) to 2012 (21.3 per 100,000) [Figure 1]. During the surveillance period, 29 (0.1 percent) case-patients were reported to have died with campylobacteriosis.

Average annual campylobacteriosis incidence rates during the surveillance period were highest among children under 1 year of age (34.0 per 100,000) and 1 to 4 years of age (40.4 per 100,000). Incidence rates among all ages rose from 2009 to 2012 but increased the greatest among adults 75-84 years of age by 54.0 percent (from 16.3 to 25.1 per 100,000) [Figure 2]. The ratio of male to female cases was 1.2:1.0. Incidence rates by race/ethnicity were not calculated due to the substantial portion of missing data (58.3 percent). Of campylobacteriosis cases with complete data, reported race/ethnicities are roughly similar in proportions to the overall demographic profile of California [Figure 3].

Forty-eight (82.8 percent) of 58 counties reported average annual incidence rates for the surveillance period that were above the Healthy People 2020 objective. Average annual incidence rates for the surveillance period were 1.9 times higher in Northern California (24.9 per 100,000) than Southern California (13.2 per 100,000). From 2009 to 2012, incidence rates for Southern California increased by 45.9 percent (from 11.1 to 16.2 per 100,000) and rates for Northern California increased by 26.1 percent (from 22.2 to 28.0 per 100,000). County-specific incidence rates for the surveillance period ranged from 0.0 to 55.0 per 100,000 persons [Figure 4].

From 2009 through 2012, CDPH received reports of 10 confirmed outbreaks of foodborne campylobacteriosis in California involving 132 cases. One multi-county outbreak involved 33 confirmed case-patients and was associated with drinking unpasteurized milk.

Notes for Figures 1-3

'2008 data are provisional

"Unknowns were excluded

**Includes cases who identified ‘other’ as their race and Californians (‘population’) who identified more than one race
Between 2009 and 2012, California has experienced an increase in campylobacteriosis incidence with the highest rate occurring in 2012 (21.3 per 100,000). The reason for this recent increase is unknown. Continued monitoring of annual rates is needed.

Consuming contaminated poultry is heavily cited as the leading source of Campylobacter infection. Efforts have been taken to address this issue. In 2011, the United States Department of Agriculture (USDA) implemented the first-ever performance standard for detection of Campylobacter in poultry by setting a maximum percentage of samples that test positive at slaughterhouses. Further measures were proposed in 2015 to increase the frequency of testing at these facilities. Both efforts are predicted to reduce the presence of Campylobacter in poultry but because the pathogen cannot be entirely eradicated from the foodborne source, consumers must be educated in safe food handling and preparation methods to reduce risk. Decreasing the contamination of poultry meat and dairy products, and consumer education may provide the best opportunities for preventing and controlling campylobacteriosis.

References and resources

Last updated 1/22/2016
Prepared by Alyssa Nguyen, Farzaneh Tabnak, Akiko Kimura, and Duc Vugia, Infectious Diseases Branch